297 research outputs found

    Ruled Laguerre minimal surfaces

    Full text link
    A Laguerre minimal surface is an immersed surface in the Euclidean space being an extremal of the functional \int (H^2/K - 1) dA. In the present paper, we prove that the only ruled Laguerre minimal surfaces are up to isometry the surfaces R(u,v) = (Au, Bu, Cu + D cos 2u) + v (sin u, cos u, 0), where A, B, C, D are fixed real numbers. To achieve invariance under Laguerre transformations, we also derive all Laguerre minimal surfaces that are enveloped by a family of cones. The methodology is based on the isotropic model of Laguerre geometry. In this model a Laguerre minimal surface enveloped by a family of cones corresponds to a graph of a biharmonic function carrying a family of isotropic circles. We classify such functions by showing that the top view of the family of circles is a pencil.Comment: 28 pages, 9 figures. Minor correction: missed assumption (*) added to Propositions 1-2 and Theorem 2, missed case (nested circles having nonempty envelope) added in the proof of Pencil Theorem 4, missed proof that the arcs cut off by the envelope are disjoint added in the proof of Lemma

    Automatic fitting of conical envelopes to free-form surfaces for flank CNC machining

    Get PDF
    We propose a new algorithm to detect patches of free-form surfaces that can be well approximated by envelopes of a rotational cone under a rigid body motion. These conical envelopes are a preferable choice from the manufacturing point of view as they are, by-definition, manufacturable by computer numerically controlled (CNC) machining using the efficient flank (peripheral) method with standard conical tools. Our geometric approach exploits multi-valued vector fields that consist of vectors in which the point-surface distance changes linearly. Integrating such vector fields gives rise to a family of integral curves, and, among them, linear segments that further serve as conical axes are quickly extracted. The lines that additionally admit tangential motion of the associated cone along the reference geometry form a set of candidate lines that are sequentially clustered and ordered to initialize motions of a rigid truncated cone. We validate our method by applying it on synthetic examples with exact envelopes, recovering correctly the exact solutions, and by testing it on several benchmark industrial datasets, detecting manufacturable conical envelope patches within fine tolerances

    Towards efficient 5-axis flank CNC machining of free-form surfaces via fitting envelopes of surfaces of revolution

    Get PDF
    We introduce a new method that approximates free-form surfaces by envelopes of one-parameter motions of surfaces of revolution. In the context of 5-axis computer numerically controlled (CNC) machining, we propose a flank machining methodology which is a preferable scallop-free scenario when the milling tool and the machined free-form surface meet tangentially along a smooth curve. We seek both an optimal shape of the milling tool as well as its optimal path in 3D space and propose an optimization based framework where these entities are the unknowns. We propose two initialization strategies where the first one requires a user’s intervention only by setting the initial position of the milling tool while the second one enables to prescribe a preferable tool-path. We present several examples showing that the proposed method recovers exact envelopes, including semi-envelopes and incomplete data, and for general free-form objects it detects envelope sub-patches

    Characterizing envelopes of moving rotational cones and applications in CNC machining

    Get PDF
    Motivated by applications in CNC machining, we provide a characterization of surfaces which are enveloped by a one-parametric family of congruent rotational cones. As limit cases, we also address ruled surfaces and their offsets. The characterizations are higher order nonlinear PDEs generalizing the ones by Gauss and Monge for developable surfaces and ruled surfaces, respectively. The derivation includes results on local approximations of a surface by cones of revolution, which are expressed by contact order in the space of planes. To this purpose, the isotropic model of Laguerre geometry is used as there rotational cones correspond to curves (isotropic circles) and higher order contact is computed with respect to the image of the input surface in the isotropic model. Therefore, one studies curve-surface contact that is conceptually simpler than the surface-surface case. We show that, in a generic case, there exist at most six positions of a fixed rotational cone that have third order contact with the input surface. These results are themselves of interest in geometric computing, for example in cutter selection and positioning for flank CNC machining.RYC-2017-2264

    Geometry and tool motion planning for curvature adapted CNC machining

    Get PDF
    CNC machining is the leading subtractive manufacturing technology. Although it is in use since decades, it is far from fully solved and still a rich source for challenging problems in geometric computing. We demonstrate this at hand of 5-axis machining of freeform surfaces, where the degrees of freedom in selecting and moving the cutting tool allow one to adapt the tool motion optimally to the surface to be produced. We aim at a high-quality surface finish, thereby reducing the need for hard-to-control post-machining processes such as grinding and polishing. Our work is based on a careful geometric analysis of curvature-adapted machining via so-called second order line contact between tool and target surface. On the geometric side, this leads to a new continuous transition between “dual” classical results in surface theory concerning osculating circles of surface curves and oscu- lating cones of tangentially circumscribed developable surfaces. Practically, it serves as an effective basis for tool motion planning. Unlike previous approaches to curvature-adapted machining, we solve locally optimal tool positioning and motion planning within a single optimization framework and achieve curvature adaptation even for convex surfaces. This is possible with a toroidal cutter that contains a negatively curved cutting area. The effectiveness of our approach is verified at hand of digital models, simulations and machined parts, including a comparison to results generated with commercial software

    A surface containing a line and a circle through each point is a quadric

    Full text link
    We prove that a surface in real 3-space containing a line and a circle through each point is a quadric. We also give some particular results on the classification of surfaces containing several circles through each point.Comment: Improved exposition, 4 figures adde

    Discretization of asymptotic line parametrizations using hyperboloid patches

    Full text link
    Two-dimensional affine A-nets in 3-space are quadrilateral meshes that discretize surfaces parametrized along asymptotic lines. The characterizing property of A-nets is planarity of vertex stars, so for generic A-nets the elementary quadrilaterals are skew. We classify the simply connected affine A-nets that can be extended to continuously differentiable surfaces by gluing hyperboloid surface patches into the skew quadrilaterals. The resulting surfaces are called "hyperbolic nets" and are a novel piecewise smooth discretization of surfaces parametrized along asymptotic lines. It turns out that a simply connected affine A-net has to satisfy one combinatorial and one geometric condition to be extendable - all vertices have to be of even degree and all quadrilateral strips have to be "equi-twisted". Furthermore, if an A-net can be extended to a hyperbolic net, then there exists a 1-parameter family of such C^1-surfaces. It is briefly explained how the generation of hyperbolic nets can be implemented on a computer. The article uses the projective model of Pluecker geometry to describe A-nets and hyperboloids.Comment: 27 pages, 17 figure

    Geometric Mechanics of Curved Crease Origami

    Full text link
    Folding a sheet of paper along a curve can lead to structures seen in decorative art and utilitarian packing boxes. Here we present a theory for the simplest such structure: an annular circular strip that is folded along a central circular curve to form a three-dimensional buckled structure driven by geometrical frustration. We quantify this shape in terms of the radius of the circle, the dihedral angle of the fold and the mechanical properties of the sheet of paper and the fold itself. When the sheet is isometrically deformed everywhere except along the fold itself, stiff folds result in creases with constant curvature and oscillatory torsion. However, relatively softer folds inherit the broken symmetry of the buckled shape with oscillatory curvature and torsion. Our asymptotic analysis of the isometrically deformed state is corroborated by numerical simulations which allow us to generalize our analysis to study multiply folded structures

    Lines pinning lines

    Full text link
    A line g is a transversal to a family F of convex polytopes in 3-dimensional space if it intersects every member of F. If, in addition, g is an isolated point of the space of line transversals to F, we say that F is a pinning of g. We show that any minimal pinning of a line by convex polytopes such that no face of a polytope is coplanar with the line has size at most eight. If, in addition, the polytopes are disjoint, then it has size at most six. We completely characterize configurations of disjoint polytopes that form minimal pinnings of a line.Comment: 27 pages, 10 figure
    corecore